A Practical Demonstration of the Mode
Checker SPIN °

Nathalie Cauchi

Computer Aided Formal Verification

November, 2018

?The slides are based on Giuseppe Perelli and Dieky Aszkiya's presentation



What is SPIN

SPIN is a general tool for:

e verifying the correctness of concurrent software models

e in a rigorous and mostly automated fashion.

It has been applied to:

e flood control and the verification of the control barriers in the
Netherlands

e verification of medical device transmission protocols.
www.spinroot.com

Today we will use the tool to and
formulas to be via backward induction.



Transition Systems in SPIN

byte state = 1;
bool a = true, b = false, ¢ = false;
active proctype P()
{
@«— ~do
& :: atomic{ state==1 -> state=3; a=false; b=true; c=true }
:: atomic{ state==1 -> state=4; a=false; b=true; c=false }
/ \ :: atomic{ state==4 -> state=2; a=false; b=false; c=true }
/ \ :: atomic{ state==4 -> state=3; a=false; b=true; c=true }
:: atomic{ state==4 -> state=5; a=true; b=true; c=true }
:: atomic{ state==2 -> state=4; a=false; b=true; c=false }
U :: atomic{ state==3 -> state=4; a=false; b=true; c=false }

:: atomic{ state==5 -> state=4; a=false; b=true; c=false }
:: atomic{ state==5 -> state=5; a=true; b=true; c=true }
od



Execution

e The SPIN code is saved in a text file with extension (e.g.
example.pml);

e SPIN can only handle a in a verification process;

e Since the transition system above has two initial states, then we
have to run the verification , once for each state, changing the
initialization of the variable state;

e If a property is by using , then the
property is satisfied by the transition system;

e If a property is by using , then the
property is not satisfied by the transition system;



Encoding LTL Formulas

Syntax
pu=plopleAp|eVe|Fp|Gel|pUp

Operator Math SPIN

negation - ! Examples
conjuction A 8&& LTL SPIN
disjunction V [ o0c <[]lc
implication — -> Ooc [1<>c
equivalence “ <> (X=c) = XXc  (X!c)-> (X Xc)
next X X Oa [1a
until U U aU(bVec) aU(bllc)
eventually F (oro) <> (XXb)U(bAc) (XXb)U (b&&c)

globally G orQd 10




Preparing a SPIN file TS1.pml

e Attach to file the following code:

o It F1 {<>[] (c|| b)}
o ItI F1 {<> [ c|| b}
o It F1 {<>[] ¢}



Verification using SPIN

1. Use SPIN with parameter -a to the promela file containing both the
model and the specifications: spin -a TS1.pml.
This generates a C file called

2. Compile the C file using GCC: gcc -o pan pan.c.

3. Execute the binary file: ./pan -a -N F1.
This checks the specification F1 against the model. To check
another specification, just replace F1 with either F2 or F3.

4. If the output says then the property is satisfied, otherwise
the property is not satisfied.

5. In the case a property is not satisfied, we can generate a
counterexample: spin -t -p TS1.pml



Exercise 1

*O\

TS
U \_/Y V
2Ol

1. Consider the two transition systems above;
2. Encode them in two separated files, e.g., TS2.pml and TS3.pml
3. Using SPIN, prove that they are not LTL -equivalent, i,e., there exist
two formulas ¢, and 3 such that,
e TS2 = o
e TS3 l;é P2
e TS3 ': ©3
o TS2 |~ 3



Exercise 2

1. Compare TS2 and TS3 with the following transition system

_>

F—
(%)

U




