

# A Practical Demonstration of the Model Checker SPIN <sup>a</sup>

Nathalie Cauchi

Computer Aided Formal Verification

November, 2018

<sup>&</sup>lt;sup>a</sup>The slides are based on Giuseppe Perelli and Dieky Aszkiya's presentation

#### What is SPIN

#### SPIN is a general tool for:

- verifying the correctness of concurrent software models
- in a rigorous and mostly automated fashion.

### It has been applied to:

- flood control and the verification of the control barriers in the Netherlands
- verification of medical device transmission protocols.

www.spinroot.com

Today we will use the tool to encode transition systems and LTL formulas to be model checked via backward induction.

1

# Transition Systems in SPIN



```
byte state = 1:
bool a = true, b = false, c = false;
active proctype P()
do
:: atomic{ state==1 -> state=3; a=false; b=true; c=true }
:: atomic{ state==1 -> state=4; a=false; b=true; c=false }
:: atomic{ state==4 -> state=2; a=false; b=false; c=true }
:: atomic{ state==4 -> state=3; a=false; b=true; c=true }
:: atomic{ state==4 -> state=5; a=true; b=true; c=true }
:: atomic{ state==2 -> state=4; a=false; b=true; c=false }
:: atomic{ state==3 -> state=4; a=false; b=true; c=false }
:: atomic{ state==5 -> state=4: a=false: b=true: c=false }
:: atomic{ state==5 -> state=5: a=true: b=true: c=true }
od
```

#### Execution

- The SPIN code is saved in a text file with extension .pml (e.g. example.pml);
- SPIN can only handle a single initial state in a verification process;
- Since the transition system above has two initial states, then we
  have to run the verification twice, once for each state, changing the
  initialization of the variable state;
  - If a property is satisfied by using all the initial states, then the property is satisfied by the transition system;
  - If a property is not satisfied by using some initial states, then the property is not satisfied by the transition system;

# **Encoding LTL Formulas**

## **Syntax**

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi \mathsf{U} \varphi$$

| Operator    | Math              | SPIN |
|-------------|-------------------|------|
| negation    | 7                 | !    |
| conjuction  | $\wedge$          | &&   |
| disjunction | $\vee$            | Ш    |
| implication | $\rightarrow$     | ->   |
| equivalence | $\leftrightarrow$ | <->  |
| next        | Χ                 | X    |
| until       | U                 | U    |
| eventually  | F (or ◊)          | <>   |
| globally    | G or □            | []   |

| LTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPIN                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| <рС обществення | <> [] C                                    |  |
| □⋄c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [] <> c                                    |  |
| $(X \neg c) \rightarrow X X c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(X \mid c) \rightarrow (X \mid X \mid c)$ |  |
| □a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [] a                                       |  |
| aU (b∨c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a U (b    c)                               |  |
| (XXb)U(b∧c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (X X b) U (b && c)                         |  |

# Preparing a SPIN file TS1.pml

• Attach to file TS1.pml the following code:

```
• Itl F1 {<> [] (c || b)}
```

- Itl F1  $\{<>[]c \mid\mid b\}$
- Itl F1 {<> [] c}

# **Verification using SPIN**

- Use SPIN with parameter -a to the promela file containing both the model and the specifications: spin -a TS1.pml.
   This generates a C file called pan.c
- 2. Compile the C file using GCC: gcc -o pan pan.c.
- Execute the binary file: ./pan -a -N F1.
   This checks the specification F1 against the model. To check another specification, just replace F1 with either F2 or F3.
- 4. If the output says error: 0 then the property is satisfied, otherwise the property is not satisfied.
- 5. In the case a property is not satisfied, we can generate a counterexample: spin -t -p TS1.pml

### Exercise 1





- 1. Consider the two transition systems above;
- 2. Encode them in two separated files, e.g., TS2.pml and TS3.pml
- 3. Using SPIN, prove that they are not LTL -equivalent, i,e., there exist two formulas  $\varphi_2$  and  $\varphi_3$  such that,
  - TS2  $\models \varphi_2$
  - TS3  $\not\models \varphi_2$
  - TS3  $\models \varphi_3$
  - TS2  $\not\models \varphi_3$

7

# Exercise 2

1. Compare TS2 and TS3 with the following transition system

