A Practical Demonstration of the Model Checker $NuSMV^1$

Viraj Wijesuriya

Computer-Aided Formal Verification Week 6, Michaelmas term 2018

¹The slides are provided, courtesy of Nathalie Cauchi

Introduction ●0	Transition systems 000000	LTL/ CTL Exercises	ВМС	
Overview				

What is NuSMV

NuSMV: a symbolic model checker

- the first model checker based on BDDs
- open architecture for model checking, which can be reliably used for the verification of industrial designs, as a core for custom verification tools, as a testbed for formal verification techniques, and applied to other research areas. ²

²nusmy fbk eu

Viraj Wijesuriya

Introduction ○●	Transition systems 000000	LTL/ CTL Exercises	BMC	
Overview				

Application

We will perform two tasks:

- 1. We will first use the tool to encode transition systems and LTL and CTL formulas to be model checked.
- 2. We will use the tool to perform bounded model checking.

Transition systems

LTL/ CTL Exercise

BMC

Extra

Transition systems in NuSMV

MODULE main
VAR
state :{s0,s1,s2,s3,s4};
ASSIGN
<pre>init(state) := {s0};</pre>
<pre>next(state) := case</pre>
<pre>state=s0 : s1;</pre>
state=s1 : $\{s3, s4\};$
<pre>state=s2 : s2;</pre>
<pre>state=s3 : s2;</pre>
<pre>state=s4 : s4;</pre>
esac;
DEFINE
a := state=s0 state=s1;
<pre>b := state=s1 state=s3;</pre>
<pre>c := state=s2 state=s3 state=s4;</pre>

Viraj Wijesuriya

Transition systems 0●0000	LTL/ CTL Exercises	BMC	

Remark

The NuSMV code is saved in a text file with extension .smv

TS1.smv

- Unlike SPIN, NuSMV can handle multiple initial states in the verification process. Hence, we only need to run the verification once.
- Can model check both LTL and CTL properties.

NuSMV specification for LTL and CTL formulae

- An LTL formula consists of atomic proposition(s), boolean operator(s) and temporal operator(s)
- A CTL formula consists of atomic proposition(s), boolean operator(s), temporal operators and path quantifier(s)

operator	math	NuSMV
not	-	!
and	\wedge	&
or	\vee	I
implies	\rightarrow	->
equivalent	\leftrightarrow	<->
always		G
eventually	\diamond	F
until	U	U
next	\bigcirc	Х
for all	A	А
exist	Ξ	E

Transition systems	LTL/ CTL Exercises	BMC	

Examples

 Some examples of the translation of LTL /CTL formula from mathematical notations to NuSMV commands

LTL/CTL formula	NuSMV
	FG c
$\Box \diamond c$	GF c
$(\bigcirc \neg c) \rightarrow (\bigcirc \bigcirc c)$	(X ! c) -> (X X c)
$\Box a$	Ga
$aU\Box(b\lor c)$	a U (G (b c))
$(\bigcirc \bigcirc b)U(b \lor c)$	(X X b) U (b c)
$\exists \diamond \forall \Box c$	EF AG c
$\forall \Box \exists \diamond \neg c$	AG EF !c

Preparing a NuSMV file TS1.smv

Attach to the file TS1.smv the following code:

LTLSPEC F G a CTLSPEC EF AG c

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 …の�()

Viraj Wijesuriya

Verification using NuSMV

To verify the transition system against the given specification(s), execute the NuSMV with the parameter name of the smv file:

NuSMV TS1.smv

 NuSMV automatically generates a counter-example when a specification is not satisfied

イロト イポト イヨト イヨト

00	OOOOOO	LIL/ CIL Exercises	BMC	
_				

Exercise 1

Verify the transition system used in example (TS1.smv) against the following properties:

In each case, explain why the property was satisfied or not.

Transition systems 000000	LTL/ CTL Exercises	BMC	

Exercise 2

- Consider the transition system on the left
- Encode the transition system (e.g. TS2.smv)

イロト イ団ト イヨト イヨト

A Practical Demonstration of the Model Checker NuSMV

3

	Transition systems 000000	LTL/ CTL Exercises	ВМС	
_				

Exercise 2

Verify the transition system (TS2.smv) against the following properties:

In each case, explain why the property was satisfied or not.

Bounded Model Checking

Recall:

- employs a SAT solver for model checker
- focuses on counterexample generation (up to a certain length)

We will now perform bounded model checking on a transition system.

イロト イポト イヨト イヨト

Bounded Model Checking: Exercise

- Consider the above transition system
- Encode the transition system (e.g. TS3.smv)

Transition systems 000000	LTL/ CTL Exercises	BMC	

Bounded Model Checking: Exercise

 Verify the transition system (e.g. TS3.smv) against the following properties using bounded model checking

$$\begin{array}{c} \bullet \ \square \diamond a \\ \bullet \ \diamond \square(a \rightarrow (b \rightarrow \diamond c)) \end{array}$$

$$\blacktriangleright \Box (a \land (\bigcirc c \to \diamond a))$$

To do bounded model checking:

```
NuSMV -bmc -bmc_length 2 TS3.smv
```

Run bounded model checking with different maximum counterexample length and comment on result

イロト イポト イヨト イヨト

Bounded Model Checking: Extra Reading

Read the tutorial on bounded model checking using NuSMV found in the below link (pages 20 - 28):

http://nusmv.fbk.eu/NuSMV/tutorial/v26/tutorial.pdf

Transition systems 000000	LTL/ CTL Exercises	BMC	Extra

Bonus Exercise

Determine whether the two formulas are equivalent:

 $\exists \Diamond (\exists \Box \ p) \text{ and } \exists \Box (\exists \Diamond \ p)$

▲ロ▶ ▲御▶ ▲注▶ ▲注▶ → 注 のQの

Viraj Wijesuriya