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Part I: SPIN
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What is SPIN

SPIN is a general tool for:

• verifying the correctness of concurrent software models

• in a rigorous and mostly automated fashion.

It has been applied to:

• flood control and the verification of the control barriers in the

Netherlands

• verification of medical device transmission protocols.

www.spinroot.com

Today we will use the tool to encode transition systems and LTL

formulas to be model checked via backward induction.

2



Transition Systems in SPIN
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Execution

• The SPIN code is saved in a text file with extension .pml (e.g.

example.pml);

• SPIN can only handle a single initial state in a verification process;

• Since the transition system above has two initial states, then we

have to run the verification twice, once for each state, changing the

initialization of the variable state;

• If a property is satisfied by using all the initial states, then the

property is satisfied by the transition system;

• If a property is not satisfied by using some initial states, then the

property is not satisfied by the transition system;
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Encoding LTL Formulas

Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Fϕ | Gϕ | ϕUϕ
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Preparing a SPIN file TS1.pml

• Attach to file TS1.pml the following code:

• ltl F1 {<> [] (c || b)}
• ltl F1 {<> [] c || b}
• ltl F1 {<> [] c}
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Verification using SPIN

1. Use SPIN with parameter -a to the promela file containing both the

model and the specifications: spin -a TS1.pml.

This generates a C file called pan.c

2. Compile the C file using GCC: gcc -o pan pan.c.

3. Execute the binary file: ./pan -a -N F1.

This checks the specification F1 against the model. To check

another specification, just replace F1 with either F2 or F3.

4. If the output says error: 0 then the property is satisfied, otherwise

the property is not satisfied.

5. In the case a property is not satisfied, we can generate a

counterexample: spin -t -p TS1.pml
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Exercise 1

1. Consider the two transition systems above;

2. Encode them in two separated files, e.g., TS2.pml and TS3.pml

3. Using SPIN, prove that they are not LTL -equivalent, i,e., there exist

two formulas ϕ2 and ϕ3 such that,

• TS2 |= ϕ2

• TS3 6|= ϕ2

• TS3 |= ϕ3

• TS2 6|= ϕ3
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Part II: NuSMV
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What is NuSMV

NuSMV: a symbolic model checker

• the first model checker based on BDDs

• open architecture for model checking, used:

• for verification of industrial designs

• as a core for custom verification tools 1
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Application

• We will perform two tasks:

1. We will first use the tool to encode transition systems and LTL

and CTL formulas to be model checked.

2. We will use the tool to perform bounded model checking.
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Transition systems in NuSMV

s0start

{a}

s1

{a b}

s4

{c}

s2

{c}

s3

{b c}

MODULE main

VAR

state :{s0,s1,s2,s3,s4};
ASSIGN

init(state) := {s0};
next(state) := case

state=s0 : s1;

state=s1 : {s3, s4};
state=s2 : s2;

state=s3 : s2;

state=s4 : s4;

esac;

DEFINE

a := state=s0 | state=s1;

b := state=s1 | state=s3;

c := state=s2 | state=s3 | state=s4;
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Remark

• The NuSMV code is saved in a text file with extension .smv

TS1.smv

• Unlike SPIN, NuSMV can handle multiple initial states in the

verification process. Hence, we only need to run the verification

once.

• Can model check both LTL and CTL properties.
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NuSMV specification for LTL and CTL formulae

• An LTL formula consists of

atomic proposition(s), boolean

operator(s) and temporal

operator(s)

• A CTL formula consists of

atomic proposition(s), boolean

operator(s), temporal operators

and path quantifier(s)

operator math NuSMV

not ¬ !

and ∧ &

or ∨ |

implies → ->

equivalent ↔ <->

always � G

eventually � F

until U U

next © X

for all ∀ A

exist ∃ E
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Examples

• Some examples of the translation of LTL /CTL formula from

mathematical notations to NuSMV commands

LTL/CTL formula NuSMV

��c FG c

� � c GF c

(©¬c)→ (©© c) (X ! c) -> (X X c)

�a G a

a U �(b ∨ c) a U (G (b | c))

(©© b) U (b ∨ c) (X X b) U (b | c)

∃ � ∀�c EF AG c

∀�∃ � ¬c AG EF !c
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Preparing a NuSMV file TS1.smv

• Attach to the file TS1.smv the following code:

LTLSPEC F G a

CTLSPEC EF AG c
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Verification using NuSMV

• To verify the transition system against the given specification(s),

execute the NuSMV with the parameter name of the smv file:

NuSMV TS1.smv

• NuSMV automatically generates a counter-example when a

specification is not satisfied
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Exercise 1

• Verify the transition system used in example (TS1.smv) against the

following properties:

• ��¬b
• ∃ � (a ∧ b ∧ ∀© b)

• ∀�(b → ∀© c)

• ∀�(a↔ ¬c)

• In each case, explain why the property was satisfied or not.
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Bounded Model Checking

Recall:

• employs a SAT solver for model checker

• focuses on counterexample generation (up to a certain length)

We will now perform bounded model checking on a transition system.
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Bounded Model Checking: Exercise

s1start

{a}

s2

{a}

s3

{b}

s4

{c}{c}

s5

{a}

• Consider the above transition system

• Encode the transition system (e.g. TS3.smv)
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Bounded Model Checking: Exercise

• Verify the transition system (e.g. TS3.smv) against the following

properties using bounded model checking

• � � a
• ��(a→ (b → �c))

• �(a ∧ (©c → �a))

• To do bounded model checking:

NuSMV -bmc -bmc length 2 TS3.smv

• Run bounded model checking with different maximum

counterexample length and comment on result
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The End

Thank you!

nathalie.cauchi@cs.ox.ac.uk
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