
A Practical Demonstration of the Model

Checkers SPIN & NuSMV a

Nathalie Cauchi

AIMS: Systems verification

January, 2019

aThe slides are based on Giuseppe Perelli and Dieky Aszkiya’s presentation

Part I: SPIN

1

What is SPIN

SPIN is a general tool for:

• verifying the correctness of concurrent software models

• in a rigorous and mostly automated fashion.

It has been applied to:

• flood control and the verification of the control barriers in the

Netherlands

• verification of medical device transmission protocols.

www.spinroot.com

Today we will use the tool to encode transition systems and LTL

formulas to be model checked via backward induction.

2

Transition Systems in SPIN

3

Execution

• The SPIN code is saved in a text file with extension .pml (e.g.

example.pml);

• SPIN can only handle a single initial state in a verification process;

• Since the transition system above has two initial states, then we

have to run the verification twice, once for each state, changing the

initialization of the variable state;

• If a property is satisfied by using all the initial states, then the

property is satisfied by the transition system;

• If a property is not satisfied by using some initial states, then the

property is not satisfied by the transition system;

4

Encoding LTL Formulas

Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Fϕ | Gϕ | ϕUϕ

5

Preparing a SPIN file TS1.pml

• Attach to file TS1.pml the following code:

• ltl F1 {<> [] (c || b)}
• ltl F1 {<> [] c || b}
• ltl F1 {<> [] c}

6

Verification using SPIN

1. Use SPIN with parameter -a to the promela file containing both the

model and the specifications: spin -a TS1.pml.

This generates a C file called pan.c

2. Compile the C file using GCC: gcc -o pan pan.c.

3. Execute the binary file: ./pan -a -N F1.

This checks the specification F1 against the model. To check

another specification, just replace F1 with either F2 or F3.

4. If the output says error: 0 then the property is satisfied, otherwise

the property is not satisfied.

5. In the case a property is not satisfied, we can generate a

counterexample: spin -t -p TS1.pml

7

Exercise 1

1. Consider the two transition systems above;

2. Encode them in two separated files, e.g., TS2.pml and TS3.pml

3. Using SPIN, prove that they are not LTL -equivalent, i,e., there exist

two formulas ϕ2 and ϕ3 such that,

• TS2 |= ϕ2

• TS3 6|= ϕ2

• TS3 |= ϕ3

• TS2 6|= ϕ3

8

Part II: NuSMV

9

What is NuSMV

NuSMV: a symbolic model checker

• the first model checker based on BDDs

• open architecture for model checking, used:

• for verification of industrial designs

• as a core for custom verification tools 1

10

Application

• We will perform two tasks:

1. We will first use the tool to encode transition systems and LTL

and CTL formulas to be model checked.

2. We will use the tool to perform bounded model checking.

11

Transition systems in NuSMV

s0start

{a}

s1

{a b}

s4

{c}

s2

{c}

s3

{b c}

MODULE main

VAR

state :{s0,s1,s2,s3,s4};
ASSIGN

init(state) := {s0};
next(state) := case

state=s0 : s1;

state=s1 : {s3, s4};
state=s2 : s2;

state=s3 : s2;

state=s4 : s4;

esac;

DEFINE

a := state=s0 | state=s1;

b := state=s1 | state=s3;

c := state=s2 | state=s3 | state=s4;

12

Remark

• The NuSMV code is saved in a text file with extension .smv

TS1.smv

• Unlike SPIN, NuSMV can handle multiple initial states in the

verification process. Hence, we only need to run the verification

once.

• Can model check both LTL and CTL properties.

13

NuSMV specification for LTL and CTL formulae

• An LTL formula consists of

atomic proposition(s), boolean

operator(s) and temporal

operator(s)

• A CTL formula consists of

atomic proposition(s), boolean

operator(s), temporal operators

and path quantifier(s)

operator math NuSMV

not ¬ !

and ∧ &

or ∨ |

implies → ->

equivalent ↔ <->

always � G

eventually � F

until U U

next © X

for all ∀ A

exist ∃ E

14

Examples

• Some examples of the translation of LTL /CTL formula from

mathematical notations to NuSMV commands

LTL/CTL formula NuSMV

��c FG c

� � c GF c

(©¬c)→ (©© c) (X ! c) -> (X X c)

�a G a

a U �(b ∨ c) a U (G (b | c))

(©© b) U (b ∨ c) (X X b) U (b | c)

∃ � ∀�c EF AG c

∀�∃ � ¬c AG EF !c

15

Preparing a NuSMV file TS1.smv

• Attach to the file TS1.smv the following code:

LTLSPEC F G a

CTLSPEC EF AG c

16

Verification using NuSMV

• To verify the transition system against the given specification(s),

execute the NuSMV with the parameter name of the smv file:

NuSMV TS1.smv

• NuSMV automatically generates a counter-example when a

specification is not satisfied

17

Exercise 1

• Verify the transition system used in example (TS1.smv) against the

following properties:

• ��¬b
• ∃ � (a ∧ b ∧ ∀© b)

• ∀�(b → ∀© c)

• ∀�(a↔ ¬c)

• In each case, explain why the property was satisfied or not.

18

Bounded Model Checking

Recall:

• employs a SAT solver for model checker

• focuses on counterexample generation (up to a certain length)

We will now perform bounded model checking on a transition system.

19

Bounded Model Checking: Exercise

s1start

{a}

s2

{a}

s3

{b}

s4

{c}{c}

s5

{a}

• Consider the above transition system

• Encode the transition system (e.g. TS3.smv)

20

Bounded Model Checking: Exercise

• Verify the transition system (e.g. TS3.smv) against the following

properties using bounded model checking

• � � a
• ��(a→ (b → �c))

• �(a ∧ (©c → �a))

• To do bounded model checking:

NuSMV -bmc -bmc length 2 TS3.smv

• Run bounded model checking with different maximum

counterexample length and comment on result

21

The End

Thank you!

nathalie.cauchi@cs.ox.ac.uk

22

mailto:nathalie.cauchi@cs.ox.ac.uk

