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Introduction

We propose Logically-Constrained Reinforcement Learning
(LCRL) algorithm to synthesize policies for Markov Decision Pro-
cesses , such that a linear time property is satisfied. Addi-
tionally, we show that LCRL sets up an online Asynchronous Value
lteration (AVI) method to calculate the maximum probability of
satisfying the given property, at any given state of the MDP - a
convergence proof for the procedure is provided.
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Reinforcement Learning with Logical Constraints

LCRL aims to

» synthesize a control policy for a stochastic model such that the
resulting traces satisfy a given temporal logic property

» calculate the maximum probability of satisfying the property
» increase the scalability of conventional model checkers

» leverage machine learning techniques in formal methods

Algorithm Flow

» Limit Deterministic Biichi Automaton (LDBA) [1]
» Synchronizing LDBA with MDP, i.e. product MDP
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Results

» Policy generates a trace that satisfies the LTL property

» Probabilities are accurately calculated comparing to
conventional DP-based methods
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Left: Satisfying policy — Right: Calculated probabilities [2]

Future Work

» Infinite-state space MDPs
» Multi-agent systems
» Empirical experiments
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